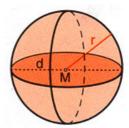
Volumen und Oberflächeninhalt der Kugel

10 01

Alle Punkte (des dreidimensionalen Raums), die von einem Punkt M die gleiche Entfernung r besitzen, liegen auf einer Kugel mit Mittelpunkt M und Radiuslänge r.

Volumen:
$$V = \frac{4}{3}r^3\pi$$

Oberflächeninhalt:
$$A = 4r^2\pi$$

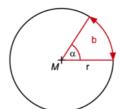


Bogenmaß:

Winkel können im Gradmaß (Vollwinkel entspricht 360°) oder im Bogenmaß (Vollwinkel entspricht 2π) gemessen werden. Im Bogenmaß verwendet man zur Bestimmung des Winkels die Bogenlänge im zugehörigen Einheitskreis (r = 1LE).

Umrechnung:
$$\frac{b}{2r\pi} = \frac{\alpha}{360^{\circ}}$$

Für den Vollwinkel gilt:
$$360^{\circ} = 2\pi$$



Trigonometrie: Sinus und Kosinus

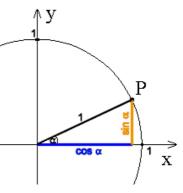
10_02

Sinus, Kosinus am Einheitskreis

(Kreis mit Radius r = 1)

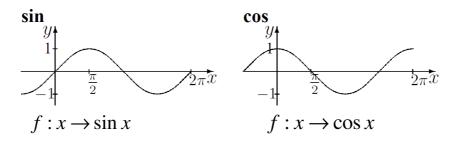
Aus den Koordinaten des Punktes P(x|y) erhält man für beliebige Winkel α die Werte $\sin \alpha$ und $\cos \alpha$ mit:





Sinus- und Kosinusfunktion

Ordnet man dem Winkel α den jeweiligen Wert $\sin \alpha$ bzw. $\cos \alpha$ zu, so erhält man die sin- bzw. cos-Funktion; dabei wird der Winkel α meist im Bogenmaß verwendet und mit x bezeichnet.

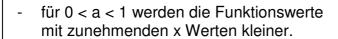


Exponentialfunktion

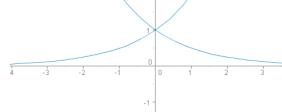
10_03

 $f: x \to a^x$ mit $a \in IR^+ \setminus \{1\}$ und $D_f = IR$ heißt Exponentialfunktion

 für a > 1 werden die Funktionswerte mit zunehmenden x Werten größer.



- für die Wertemenge gilt: W= IR+
- die x-Achse ist eine horizontale Asymptote jeder beliebigen Exponentialfunktion



- der Graph G_f schneidet die y-Achse immer in T(0|1)

Der Logarithmus

10_04

Zur Lösung folgender Gleichung $a^x = b$ benötigt man den Logarithmus.

Der Logarithmus von b zur Basis a ist diejenige Zahl, mit der man a potenzieren muss, um b zu erhalten.

Für $a, b \in IR^+$ und $a \ne 1$ ist $x = \log_a b$ die Lösung der angegebenen Gleichung.

Steht am Logarithmus keine Basis, so ist die Basis 10 gemeint. $\log_{10} a = \log a$

Sonderfälle (mit b $\in IR^+ \setminus \{1\}$)

$$\log_b 1 = 0$$
 und $\log_b b = 1$

Rechenregeln (mit b > 0; c > 0)

$$\log_a(b \cdot c) = \log_a b + \log_a c \qquad \qquad \log_a(b)^c = c \cdot \log_a b$$

$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c \qquad \log_a b = \frac{\log_c b}{\log_c a}$$

Exponentialgleichung

10 05

Gleichungen bei denen die Unbekannte nur im Exponenten auftritt, heißen Exponentialgleichungen.

Beispiel:
$$3 \cdot 5^{2x} = 2^{x+3}$$

nach der Umformung erhält man:

$$x = \frac{3\log 2 - \log 3}{2\log 5 - \log 2} \approx 0{,}388$$

Die Gleichungen können rechnerisch und zeichnerisch gelöst werden. Zur zeichnerischen Lösung zeichnet man den Graphen des Terms links vom "="-Zeichen und anschließend den Rechten. Der x-Wert des Schnittpunkts der beide Graphen entspricht der gesuchten Lösung.

Lösungsstrategien:

- die Gleichung in die Form $a^x = b$ bringen und anschließend lösen (**10 04**).
- Logarithmieren der Gleichung und anwenden der Rechenregeln.
- Umformen der Gleichung, so dass auf beiden Seiten eine Potenz mit gleicher Basis steht, anschließend Exponentenvergleich durchführen.

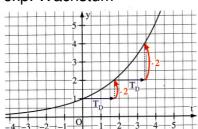
Exponentielles Wachstum I

10 06

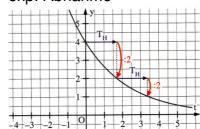
Viele Wachstumsvorgänge in Natur, Technik und Wirtschaft lassen sich mithilfe einer Exponentialfunktion (näherungsweise) beschreiben

allgemeiner Ansatz: $f: x \rightarrow b \cdot a^t$

exp. Wachstum



exp. Abnahme



y-Achse: Wachstumsgröße; x-Achse: Zeit

T_D: Verdoppelungszeit T_H: Halbwertszeit

Exponentielles Wachstum II

10_07

Zum linken Graphen:

Nach jeweils 1,75 Zeiteinheiten (Verdoppelungszeit) verdoppelt sich die Wachstumsgröße (y-Wert).

Zum rechten Graphen:

Nach jeweils 1,66 Zeiteinheiten (Halbwertszeit) halbiert sich die Wachstumsgröße.

Beschreibung des Ansatzes $f: x \rightarrow b \cdot a^t$

b steht für den Anfangswert der Wachstumsgröße (Bsp: rechter Graph b=4) a ist der Wachstumsfaktor mit a>0 und a≠1. (Bsp: rechter Graph a≈0,66)

Für a>1 nimmt die Wachstumsgröße zu: exponentielles Wachstum Für 0<a<1 nimmt die Wachstumsgröße ab: exponentielle Abnahme

Ganzrationale Funktionen I

10 08

Ganzrationale Funktion n-ten Grads (weitere Bezeichnungen: Polynom, Polynomfunktion):

allgemeiner Ansatz:

$$f(x) = a_n x_n + a_{n-1} x_{n-1} + ... + a_2 x_2 + a_1 x_1 + a_0$$
mit $n \in IN_0$ und $a_n \in IR\setminus\{0\}$

Die Zahlen a_n, a_{n-1}, \dots heißen Koeffizienten des Polynoms.

Zur Bestimmung der Nullstellen setzt man f(x) = 0.

Für die Berechnung der Nullstellen verwendet man die Polynomdivision (**10_10**). Eine ganzrationale Funktion n-ten Grads hat höchstens n verschiedene Nullstellen. Die Funktion f lässt sich mit der Kenntnis Ihrer bis zu n Nullstellen folgendermaßen darstellen: $f(x) = (x - x_1)(x - x_2) \cdot \dots \cdot (x - x_n)$

Ganzrationale Funktionen II

10_09

Eigenschaften Ganzrationaler Funktionen:

Symmetrie:

- wenn für jeden Wert von x gilt f(-x) = f(x), dann ist G_f achsensymmetrisch zur y-Achse. Bsp.: $f(x) = x^4 + 2x^2$
- wenn für jeden Wert von x gilt f(-x) = -f(x), dann ist G_f punktsymmetrisch zum Ursprung. Bsp.: $f(x) = x^3 + 3x$

Verhalten für $x \to \pm \infty$:

Wird eine Funktion für $x \rightarrow \infty$ unbeschränkt größer, so strebt die Funktion gegen unendlich

Beispiel:
$$f(x) = 2x^3 + x + 1$$

für
$$x \to \infty$$
 gilt $f(x) \to \infty$,

für
$$x \to -\infty$$
 gilt $f(x) \to -\infty$

Polynomdivision

10_10

Bestimmung der Nullstellen ganzrationaler Funktionen:

1-ten Grads: lineare Funktion (y = mx + t)

auflösen nach x liefert mit y = 0:
$$x = \frac{-t}{m}$$

2-ten Grads: Quadratische Lösungsformel (Mitternachtsformel)

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ab 3-ten Grads: Hier gibt es keine einfache Lösungsformeln. Bestimmung der Nullstellen mittels Polynomdivision.

Bsp.:
$$x^3 - 5x^2 - 4x + 8 = 0$$

- 1. Schritt: Finden einer Lösung durch gezieltes Probieren. (im Bsp: $x_1 = 1$)
- 2.Schritt: Abspalten eines Linearfaktors (Polynomdivision)

$$(x^3-5x^2-4x+8):(x-1)=x^2-4x-8$$

3. Schritt: Bestimmung der übrigen Lösungen

(im Bsp:
$$x_2 = 2 + 2\sqrt{3}$$
; $x_3 = 2 - 2\sqrt{3}$)

Grenzwerte 10_11

Ganzrationale Funktionen:

Für $x \to \pm \infty$ gilt hier stets $f(x) \to \infty$ oder $f(x) \to -\infty$ (siehe 10_09)

Gebrochenrationale Funktionen:

Hier ist es möglich, dass sich die Funktionswerte f(x) für $x \to +\infty$ oder für $x \to -\infty$ beliebig nahe an eine Zahl a annähern. Ist das der Fall, so heißt a Grenzwert der Funktion für $x \to +\infty$ bzw. $x \to -\infty$.

Schreibweise: $\lim_{x\to\infty} f(x) = a$ oder $\lim_{x\to\infty} f(x) = a$

Beispiel: $\lim_{x\to\infty} \left(\frac{1}{x}+1\right) = 0+1=1$

die Funktion **konvergiert** für $x \to +\infty$ gegen den Wert a = 1, die

Annäherung erfolgt von oben

Die Gerade mit der Gleichung y = a ist waagrechte Asymptote von Gf.

Einfluss von Parametern auf den Funktionsgraphen

10_12

Der Funktionsterm f(x) kann durch die Parameter a, b, c, d folgendermaßen modifiziert werden

Verschiebung:

in x-Richtung: $f_1(x) = f(x-a)$; $a \in IR \setminus \{0\}$ in y-Richtung: $f_2(x) = f(x) + b$; $b \in IR \setminus \{0\}$

Streckung (Stauchung):

in x-Richtung: $f_3(x) = f(c \cdot x)$; $c \in IR^+ \setminus \{1\}$ in y-Richtung: $f_4(x) = d \cdot f(x)$; $d \in IR^+ \setminus \{1\}$

Spiegelung:

an der x-Achse: $f_5(x) = -f(x)$ an der y-Achse: $f_5(x) = f(-x)$ am Ursprung: $f_6(x) = -f(-x)$

Mehrstufige Zufallsexperimente

10 13

A und B sind zwei Ereignisse, die bei einem zusammengesetzten Zufallsexperiment auftreten können.

Dabei ist...

- $\dots P(A)$ die Wahrscheinlichkeit für das Ereignis A.
- ... *P*(*B*) die Wahrscheinlichkeit für das Ereignis B.
- ... $P(A \cap B)$ die Wahrscheinlichkeit das sowohl das Ereignis A, wie auch das Ereignis B eintritt.
- $\dots P_A(B)$ die Wahrscheinlichkeit für das Eintreten des Ereignisses B, wenn das Ereignis A bereits eingetreten ist.
- $\dots P_B(A)$ die Wahrscheinlichkeit für das Eintreten des Ereignisses A, wenn das Ereignis B bereits eingetreten ist.

 $P_{R}(A)$, $P_{A}(B)$ werden als **bedingte Wahrscheinlichkeit** bezeichnet (**10_14**).

Bedingte Wahrscheinlichkeit

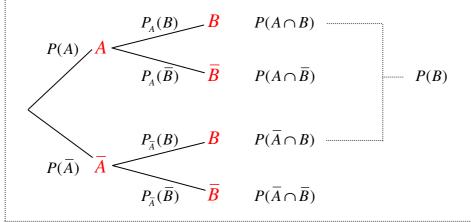
10 14

Die Wahrscheinlichkeit, mit der das Ereignis A unter der Voraussetzung, das B bereits eingetreten ist (Bedingung), eintritt lautet:

$$P_{B}(A) = \frac{P(A \cap B)}{P(B)}$$

Dabei muss $P(B) \neq 0$ sein.

Visualisierung am Baumdiagramm:



Pfadregeln 10_15

Aus dem in **10_14** dargestelltem Baumdiagramm ergeben sich folgende **Pfadregeln**:

$$(I) \quad P(A \cap B) = P(A) \cdot P_A(B)$$

$$(II) \ P(B) = P(A \cap B) + P(\overline{A} \cap B)$$